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In an effort to understand the deterministic vs stochastic character of the Portevin–Le Châtelier(PLC)
phenomenon, we investigate the structure of the underlying mechanism that generates the stick-slip patterns of
stress over time. The stress time series is reduced to a series of successive pairs of minimum and maximum
values representing the stick-slip patterns and a statistical analysis by means of hypothesis testing is applied to
it. The null hypothesis of least deterministic structure is that the time series of extreme values is a bounded
random walk of alternating direction(BRWAD); that is, besides the constraint of succession of minima to
maxima bounded at a predefined range there are no other correlations in the data. To implement the test we use
surrogate data generated by a model consistent with a BRWAD type process, which also uses the statistics of
the original data to best mimic them. The proposed hypothesis testing is found to perform properly on
simulated data from stochastic and deterministic systems. For the PLC time series, the null hypothesis is
rejected at a high level of confidence giving evidence for some deterministic structure in the succession of the
extreme stress values. This result allows for further statistical analysis including also the time aspect of the
stick-slip patterns.
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I. INTRODUCTION

The presence ofstick-slippatterns(slow rather linear elas-
ticlike up-trends followed by down-trends of fast plastic re-
laxation) in stress time series of metallic alloys is attributed
to thePortevin–Le Châtelier(PLC) effect, a form of plastic
instability [1]. The PLC effect has been the subject of exten-
sive study. For example, models of PLC-like deformation
have been presented in[2–10] and [11–13]. While these
rather sophisticated, physically based mathematical models
capture some of the PLC structure, they cannot explain in
detail the mechanism underlying the different regimes of the
PLC effect. On the other hand, stress time series obtained
from constant strain rate deformation during PLC have been
studied in[14–16] with techniques of nonlinear time series
analysis and evidence has been reported for the presence of
deterministic, nonlinear, and chaotic behavior. Still, the na-
ture of the underlying mechanism of the PLC effect seems to
need further investigation.

The succession of slow positive and fast negative linear
trends of the stick-slip patterns characterizes the stress time
series with data asymmetry and time irreversibility, both in-
dicating nonlinearity and deterministic dynamics[17,18].
However, these dynamics regard small time scales and are
evident even by eye-ball judgment. So, in order to get insight
onto the underlying mechanism one has to investigate
whether there islong termdeterministic structure in addition
to theshort termnonlinear dynamics that forms the stick-slip
patterns. In[19], a statistical test was conducted comparing
stress time series of stick-slip patterns from single crystals to
time series having reshuffled the stick slip patterns, but the

results were not conclusive to suggest significant discrimina-
tion.

In this paper, we attempt through a statistical approach to
deal with the question whether the underlying system has a
long memory that spans over the time of a stick-slip pattern
or the sequence of upward and downward trends of the stick-
slip patterns is totally random. We simplify the data analysis
by assigning one time step for the time of each upward and
downward(both approximately linear) trend, i.e., we derive
time series of successive maximum and minimum values
from the stress time series.

The statistical analysis of the time series of extreme val-
ues is focused on the hypothesis test for randomness under
the constraint of succession of minima and maxima bounded
at a predefined range of values, which we callbounded ran-
dom walk of alternating direction(BRWAD). We develop a
very simple stochastic phenomenological model to generate
surrogate data consistent to the null hypothesis, i.e., the sur-
rogate time series are realizations of a BRWAD process that
also mimic the original time series of extrema in terms of the
amplitude distribution of the minima and maxima. This
model doesnot have long term memory and generates visu-
ally indistinguishable time series from the experimental time
series of extrema. The surrogate data test is applied first to
simulated time series exhibiting stick-slip patterns generated
by stochastic and deterministic systems to assert that it per-
forms properly and then it is applied to some experimental
stress time series.

We believe it is important to conduct a rigorous surrogate
data test for the simplest hypothesis for the stick-slip patterns
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in order to assess whether long term correlations in the stress
time series can be statistically established and determine the
level of significance for this. The work in this paper consti-
tutes the first approach in a step-by-step statistical analysis
and phenomenological modeling of the stress time series.
Thus if the working null hypothesis is rejected at high con-
fidence level then the model of BRWAD type can be ex-
panded to incorporate also temporal correlations.

The BRWAD model and the statistical test are presented
in Sec. II. The performance of the test using BRWAD is
assessed in Sec. III using simulated data and the test is ap-
plied to stress time series in Sec. IV. Discussions of the re-
sults and concluding remarks are given in Sec. V.

II. THE STATISTICAL ANALYSIS

The time series we focus our statistical analysis on are
comprised of alternating extreme points, typically derived
from a time series of oscillating type. Our primary interest is
in time series of stick slips, such as the stress time series. In
Fig. 1, a segment of the stress time series and the respective
time series of extrema are shown(the stress time series in the
figure is described in Sec. IV). In the time series of extrema,
only the turning points of the original time series are pre-
served dropping all the other points, which, due to the lin-
earity of each up and down trend, do not contain any inter-
esting dynamical information. However, this severe filtering
does not preserve the information for the time period of each
trend. This kind of reduction of information is common in
the analysis of time series which exhibit “exciting” varia-
tions in only a small subset of the original data set. For
example, in the nonlinear analysis of time series, interspike
intervals are often used instead of the complete time series
[20]. Thus the time series of extrema evolves on a different
time scale, i.e., a single time step in the time series of ex-
trema in Fig. 1(b) corresponds to several time steps in the
stress time series in Fig. 1(a). In this way, time undergoes a
nonuniform transformation. As a consequence, the presence
of one-step correlations in the time series of extrema implies

the presence of long-term correlations in the stress time se-
ries.

The objective of our statistical analysis is to investigate
whether it is possible that a time series of extrema, as those
derived from the stress time series, be a realization of a sto-
chastic process under the least of constraints implied by the
data configuration. For this, we first build an appropriate
model and then we assess the adequacy of the model using a
number of statistical measures combined with the surrogate
data test for the hypothesis.

A. A model for the time series of extrema

Consider the time series of extremax1,x2, . . . ,xn. It satis-
fies the constraint of consecutive minima and maxima:
x1,x2, x2.x3, x3,x4, etc. Furthermore, we will also make
the simplifying assumption thatx1 is a minimum andxn is a
maximum. We present a probabilistic model for the genera-
tion of x1,x2, . . . ,xn.

As a first step we introduce two auxiliary time seriesy0,
y1,y2, . . . ,yn/2−1 andu1,u2,. . .,un/2, defined as follows:

yk = x2k+1 for k = 0,1,2, . . . ,
n

2
− 1,

uk = x2k for k = 1,2, . . . ,
n

2
,

i.e., we rewrite the original time series as
y0,u1,y1,u2, . . . ,yn/2−1,un/2, where theyk’s are the minima
and theuk’s the maxima. For example, referring to Fig. 1(b),
the first four samples arey0=x1=9.63, u1=x2=12.82, y1
=x3=10.48, andu2=x4=11.75. Thus we can consider two
separate time series associated to the two components ap-
pearing with period 2, one for maximahukjk=1

nu and one for
minima hykjk=0

ny , whereny= n/2 −1, nu= n/2 andn=ny+nu

+1.
We assume for the underlying process that, giveny0, the

yk’s and uk’s are generated fork=1,2, . . . by thefollowing
rule:

FIG. 1. (a) Segment of the stress time series S1, where the samples are denoted by connected dots, the local maxima by open circles, and
the local minima by crosses.(b) The segment of the time series of extrema corresponding to the segment of the stress time series in(a). The
samples of the new time series are denoted by connected open circles and crosses in alternating order and correspond to the minima and
maxima in(a).
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uk = vksU − yk−1d + yk−1, s1d

yk = wksuk − Ld + L. s2d

Thus the processhxtj is given in terms of two random pro-
cesseshvkj and hwkj, defined as follows:(a) for everyk we
have vk,Vf0,1g and wk,Wf0,1g, where Vf0,1g and
Wf0,1g are arbitrary distributions on the intervalf0,1g and
we call themcore distributions; (b) hvkj and hwkj are white
noise, i.e., for all timesi ,k with i Þk

svi − vīdsvk − vk̄d = 0,

swi − wīdswk − wk̄d = 0,

svi − vīdswk − wk̄d = 0 and svk − vk̄dswk − wk̄d = 0

where the overbar denotes expected value.
Hence the generation of the “interleaved”yk anduk time

series can be described as follows: the first minimumy0 is
selected randomly in the intervalfL ,Ug, which forms the
range for the data(actually, in the implementation we choose
y0P fL ,sL+U /2dg); then at timesk=1,2, . . . we select a
maximum in the intervalfyk−1,Ug according to Eq.(1) and a
minimum in the intervalfL ,ukg according to Eq.(2). The
process defined in this way is a type of random walk since at
each iteration of the process a random move is made from
the last position. The walk is bounded from above and below
by the parametersU andL and at each step the direction is
restricted to be opposite to the direction in the previous step.
We call the model for this processbounded random walk of
alternating direction(BRWAD). Note that the variables of
this process are not identically distributed as the transform at
each iteration in Eqs.(1) and(2) depends on the variableyk−1
or uk. However, the upward and downward random incre-
ments(i.e.,uk−yk−1 andyk−uk) are determined(respectively)
by vk and wk [see Eqs.(1) and (2)], which follow the core
distributionsVf0,1g and Wf0,1g and do not depend on the
current position.

Note that Eq.(1) can be rewritten in the form of a random
coefficients autoregressive(AR) model:

uk = akuk−1 + bk, s3d

where the random coefficients are

ak = s1 − vkdwk−1 and bk = s1 − vkds1 − wk−1dL + vkU.

Similarly, Eq. (2) can be rewritten as

yk = ckyk−1 + dk, s4d

where

ck = s1 − vkdwk and dk = s1 − wkdL + vkwkU.

Hence, Eqs.(3) and(4) taken together form an order one AR
model with random and periodic coefficients of period 2,
which is regarded as a low order nonlinear stochastic model
[21].

Returning to the time series of extremax1,x2, . . . ,xn, this
is generated by the BRWAD process in the following man-

ner: first x1 is chosen in the intervalfL ,Ug; then (for k
=1,2, . . .) x2k andx2k+1 are generated by

x2k = vksU − x2k−1d + x2k−1, s5d

x2k+1 = wksx2k − Ld + L. s6d

This completes the specification of the probabilistic model of
the time series of extrema.

B. Generation of surrogate data

We use the BRWAD model to generate surrogate data and
test the null hypothesis that the time series does not possess
correlations apart from those imposed by the succession of
maxima and minima. The BRWAD model is tailored to rep-
resent the null hypothesis. The novelty of generating proper
surrogate data is to match certain sample statistical properties
of the original data. So, for the BRWAD model, we need to
specify the boundsL, U and the core distributionsVf0,1g
andWf0,1g from the given time series of extremahxtjt=1

n . We
set the bounds to the minimum and maximum of the original
time series,L=xmin and U=xmax. The core distributions are
formed by the empirical sample distributions estimated from
hxtjt=1

n as follows. The estimates ofvk and wk (call them v̂k

and ŵk) can be obtained fromxt using Eqs.(5) and (6)

vk =
x2k − x2k−1

U − x2k−1
and wk =

x2k+1 − L

x2k − L
. s7d

The sample valueshv̂kjk=1
nu andhŵkjk=1

ny are computed from Eq.
(7) using the original data and they form the sample distri-
butions ofVf0,1g and Wf0,1g, respectively, i.e., at each it-
eration of the model a random componentvk andwk is drawn
with equal probability fromhv̂kjk=1

nu andhŵkjk=1
ny , respectively.

The complete algorithm for the generation of a surrogate
time serieshztjt=1

n with BRWAD is as follows:
(1) We computeL=xmin, U=xmax, hv̂kjk=1

nu , andhŵkjk=1
ny .

(2) We select z1=y0 randomly in the rangefL , sL
+Ud/2g.

(3) We generate the maxima and minima of the surrogate
time series as follows[recall Eqs.(5) and (6)]

z2k = vksU − z2k−1d + z2k−1, k = 1,2, . . . ,nu,
s8d

z2k+1 = wksz2k − Ld + L, k = 1,2, . . . ,ny,

where the componentsvk andwk are draws fromhv̂kjk=1
nu and

hŵkjk=1
ny , respectively.

C. The discriminating statistics

An important part of the statistical analysis is the estima-
tion of linear and nonlinear characteristics of the time series
of extrema. For the linear analysis, we consider the autocor-
relation and the fit with a low order linear autoregressive
(AR) model and for the nonlinear analysis the mutual infor-
mation and the fit with a local average model. These four
methods serve also as discriminating statistics for the test,
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denoted in general asq, for the surrogate data test and they
are briefly presented below.

1. Autocorrelation

The autocorrelationrstd measures the linear correlation in
the time series and is defined as

qAUT
t ; rstd =

Šsxt − kxldsxt−t − kxld‹
Šsxt − kxld2

‹

, s9d

wherekxl is the average over all available data(note that this
is a time average whereasx̄ is the expectation). The discrimi-
nating statistic of autocorrelation is computed for a range of
delayst and for eacht a separate hypothesis test is made.

2. Autoregressive fit

The fit with an AR model of orderm is

x̂t+1 = f0 + o
j=1

m

f jxt−j+1, s10d

where the coefficientsf0,f1, . . . ,fm are estimated by least-
squares fit. The goodness of fit is measured here with the
correlation coefficient CCsmd between true and predicted
data

qARF
m ; CCsmd =

Šsxt+1 − kxldsx̂t+1 − kx̂ld‹
Î
Šsxt+1 − kxl2d‹Šsx̂t+1 − kx̂l2d‹

, s11d

and this is the discriminating statistic for each orderm.

3. Mutual information

The mutual informationIstd measures the general corre-
lation (linear and nonlinear) betweenxt andxt−t for different
delayst and is defined as[17,22]

qMUT
t ; Istd = o

i,j
pi log

pi,j

pipj
. s12d

In the above expression the summation is over the bins of the
partition of the data(default value is 16), pi is the estimated
probability that a data pointxt is in bin i, pj is the estimated
probability that a data pointxt−t is in bin j , and pi,j is the
estimated joint probability thatxt is in bin i andxt−t is in bin
j .

4. Local average mapping

For most of the methods of nonlinear time series analysis
the scalarsxt are transformed to pointsxt in Rm using a delay
parametert, so thatxt=fxt ,xt−t , . . . ,xt−sm−1dtg8 [17]. Here, we
simply sett=1. A local model estimates the function that
maps the pointxt to xt+1 locally for each target pointxt. We
use a simple local model, called local average mapping
(LAM ), which predicts the one time step mappingx̂t+1 of
each reconstructed pointxt from the average of the respec-
tive mappings of itsk nearest neighbor points. The model is
applied in the same way as the AR model and the discrimi-
nating statisticqLAM

m is computed as in Eq.(11). The param-

eter m of LAM is called embedding dimension and has the
same role as the orderm for the AR model. Note that LAM
is not used here as an excellent nonlinear model, but as a
simple nonlinear statistic, which is actually popular in terms
of the surrogate data test for nonlinearity[23,24].

All the above measures assume stationarity of the time
series. The time series of extrema can be seen as nonstation-
ary if we regard it as a concatenation of two different pro-
cesses. We overlook this inconsistency bearing in mind that
the estimates from the measures do not assign exact statisti-
cal properies, but they are rather used as discriminating sta-
tistics for the hypothesis test.

D. The surrogate data test

The estimation of statistical measures on a time series of
extrema, as the four measures described above, may give
evidence for the existence and degree of stochasticity, deter-
minism, and nonlinearity of the underlying mechanism. For
example, a moderate autocorrelation compared to a large
mutual information in the first few lags may be interpreted as
a sign of the existence of nonlinear determinism. Still, such
evidence is incomplete if we do not know what is the range
of values of the measure estimates that would be expected
under the assumption of a certain system type for the data.
Our interest is to investigate whether the underlying system
can be regarded as purely stochastic or as one that contains
some degree of determinism(or correlation) that in turn may
be linear, nonlinear, or both. The use of surrogate data in
hypothesis testing provides the empirical distribution of the
discriminating statisticq under the null hypothesis H0 for the
nature of the underlying system. Therefore the test is consid-
ered rigorous and it can be applied also when the distribution
of q is not known analytically. The empirical distribution of
q is formed from the valuesq1,q2, . . . ,qM computed on an
ensemble ofM surrogate data consistent to H0. So, the test
decision is drawn by simply evaluating whether the statistic
q0 computed on the original data falls within the empirical
distribution ofq under H0.

The working hypothesis H0 is that the time series of ex-
trema is generated by a system that alternates between turn-
ing points in a totally random manner, i.e., it is a process of
BRWAD type. The surrogate data test is conducted in the
following steps.

(1) We generate M surrogate time series
hzt

1jt=1
n ,hzt

2jt=1
n , . . . ,hzt

Mjt=1
n , from the BRWAD model fitted to

the given time serieshxtjt=1
n , as described in Sec. II B.

(2) We compute one of the discriminating statistics in
Sec. II C on the original datahxtjt=1

n and on the surrogate time
serieshzt

1jt=1
n ,hzt

2jt=1
n , . . . ,hzt

Mjt=1
n giving the estimatesq0 and

q1,q2, . . . ,qM, respectively.
(3) We reject H0 at a significance levela (we set a

=0.05) if q0 lies in the tail of the distribution formed by
q1,q2, . . . ,qM, where the tail is determined bya.

The test decision in the last step can be made using the
parametric or nonparametric approach.

(1) Parametric approach: We assume that the distribution
of q under H0 is normal (our simulations support this as-
sumption) and we compute the so-called significanceS by
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S=
uq0 − kqlu

sq

where kql is the average andsq the standard deviation of
q1,q2, . . . ,qM. Significance of about 2 suggests the rejection
of H0 at the significance levela=0.05 s95% confidence
leveld.

(2) Nonparametric approach: We orderq0,q1,q2, . . . ,qM

and we reject H0 if q0 is in a position smaller thansa/2d
3sM +1d or greater thans1−a/2dsM +1d assuming a two-
sided test. ForM =40 anda=0.05 we reject H0 if q0 is in the
first or last position of the ordered sequence of
q0,q1,q2, . . . ,qM.

Complementary to the surrogate data test for the time se-
ries of extremahxtjt=1

n , we also perform the same test on the
time series of minimahytjt=1

ny and maximahutjt=1
nu . The respec-

tive surrogate time series are derived from
hzt

1jt=1
n ,hzt

2jt=1
n , . . . ,hzt

Mjt=1
n accordingly.

III. PERFORMANCE OF THE TEST

We verify the validity of the statistical analysis on simu-
lated data and study the significance and power of the surro-
gate data test. We chose time series of extrema from three

representative systems in order to assess the consistency of
the statistical analysis to the dynamical properties of the sys-
tems. The systems are a BRWAD stochastic process, a
pseudoperiodic system, and a chaotic system.

A. BRWAD with uniform input noise

In Sec. II A, we designed the model BRWAD that gener-
ates stochastic time series of extrema with the least of corre-
lations under the constraint of consecutive turning points.
Here, the working data are generated by this model using
standard uniform core distributions, i.e.,wt,Uf0,1g and vt

,Uf0,1g.
In Fig. 2 we show the estimates for autocorrelation,rstd,

mutual information,Istd, the correlation coefficient from the
fit [denoted as CCsmd] with an autoregressive model ARsmd,
and the CCsmd from a fit with local average mapping
LAM smd. The estimates are computed on a time series of
extrema ofn=2048 samples and on the respective time series
of minima and maxima, whereny=nu=1024. For the time
series of minima and maxima the autocorrelation function
decays exponentially to zero while for the time series of
extrema it converges to a rather strong two-periodic function
due to the alternating minima and maxima. This oscillating
behavior ofrstd is due to the alternation between two under-

FIG. 2. Four estimates of dynamical characteristics computed on a time series of extrema, minima, and maxima, generated by the
BRWAD model with uniform input noise as indicated in the legends.(a) Autocorrelation vs delay.(b) Mutual information vs delay.(c)
Correlation coefficient of the fit from an AR model vs the orderm. (d) Correlation coefficient of the fit from a LAM model vs the embedding
dimensionm.
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lying processes which render the time serieshxtj nonstation-
ary. The general correlations estimated byIstd are also
higher for the extrema than for the minima and maxima. The
same feature is observed from the estimates of fit from the
linear and the nonlinear model. All four measures suggest
that the imposed alternations in the generation of the data
result in correlated time series with the time series of ex-
trema having distinctly strong(and linearly alternating) cor-
relations. It seems that all correlations tend to stabilize for
time windows that span over at least two samples[corre-
sponding tot.2 for rstd andIstd andm.2 for ARsmd and
LAM smd].

The estimates presented in Fig. 2 are used as discriminat-
ing statistics in the surrogate data test to assess the signifi-
cance(type I error) of the test, i.e., the probability of reject-
ing H0 when it is true. We generated 100 time series of
extrema using the BRWAD model with uniform input noise.
We repeated this for a number of data sizes ranging from 128
to 16 384 with an increment of power of 2(i.e., 7 , . . . ,14).
For each one of the 100 realizations,M =40 surrogate time
series were generated using the BRWAD model as described
in Sec. II A. The discriminating statistics were computed on
the original and surrogate data varying the free parameter of
each measure in the same way as we did for Fig. 2, i.e., lag
t=1, . . . ,10, for the statistic of autocorrelationqAUT

t and the
statistic of mutual informationqMUT

t ; order (or embedding
dimension) m=1, . . . ,10 for the statistic of the correlation
coefficient of the fit from AR and LAM,qARF

m and qLAM
m ,

respectively. Then we estimated the probability of rejection
(counting the percentage of rejections out of 100 realiza-
tions) at the significance level ofa=0.05 for each test. The
total number of tests for each of the 100 realizations is the
product of the following factors:

(i) three types of time series(extrema, minima, and
maxima);

(ii ) seven data sizess27,28, . . . ,214d;
(iii ) four discriminating statistics(qAUT

t , qMUT
t , qARF

m , and
qLAM

m ); and
(iv) ten values of the free parameter(t or m, from 1 to

10).
The results showed excellent robustness for all different

factors as the probability of rejection was always at the sig-

nificance level(for a=0.05 we found about five rejections in
100 tests). For the time window of two(t=2 or m=2 de-
pending on the statistic) we show in Fig. 3 the results of the
probability of rejection for the range of data sizes. It is noted
that the nominal probabilitysa=0.05d was obtained even for
realizations of 128 extrema and 64 minima and maxima and
for all four statistics. In Fig. 3 the results are obtained using
the parametric approach. The nonparametric approach gave
qualitatively the same results.

B. Pseudoperiodic system

The pseudoperiodic systems are nonlinear deterministic
systems which have nontrivial dynamics and maintain some
degree of irregularity. In the simulations, we use a 2-torus in
a fourth-dimensional space described in[25]. The time series
is derived as the sum of the second and fourth system vari-
ables giving similar stick-slip patterns to those observed in
PLC. The sampling time ists=0.1s and the distribution of
the periods of the oscillations(of stick-slip type) has a peak
at 20 samples.

Obviously, pseudoperiodic systems cannot be modeled by
stochastic systems and therefore the BRWAD model should
fail when applied to the time series of extrema derived by
such a system. Our simulations showed that the time series
of extrema, minima, and maxima from the pseudoperiodic
system is discriminated from BRWAD surrogates even when
the time series are small and noisy. In particular, we assess
the power of the four statistics of the surrogate data test on
small time series, noise-free and corrupted with up to 60%
observational noise(meaning that we added white normal
noise with standard deviation being 60% of the standard de-
viation of the data). The results are shown in Fig. 4. The
simulation setup is as for the BRWAD model above.

The power of the measures decrease with the increase of
noise amplitude. For example, as Fig. 4(a) shows, while the
power ofqMUT

t for noise-free data is 1 for allt, when the data
are corrupted with 60% noise its power drops to about 0.05
for all t. The statisticqAUT

t seems to be the most robust to
noise, but has generally smaller and varying power with the
free parameter, as compared to the other three statistics. The
statisticsqARF

m andqLAM
m reach the highest level of power in

FIG. 3. The estimated probability of rejection when applying parametric surrogate data tests on 100 realizations of extrema in(a), minima
in (b), and maxima in(c), generated by the BRWAD model with uniform input noise. The test results are for the statisticsqAUT

t , qMUT
t , qARF

m ,
andqLAM

m , as indicated in the legends.
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the noise-free case, but their power decreases in various
ways when the data are corrupted with high degree of noise
and less for the whole time series of extrema than for the
time series of minima and maxima. This is somehow ex-
pected as in the presence of high levels of noise the deter-
ministic structure of the pseudoperiodic time series is
masked and the original time series cannot be clearly distin-
guished from the BRWAD counterparts.

C. Chaotic system

We consider here the extreme time series from the fourth
variable of the system of Rössler hyperchaos, which is a
fourth order differential deterministic system that can exhibit
stochastic behavior[26]. The oscillations of this time series
are of the stick-slip type. The sampling time ists=0.1 s and
the period of stick-slips has a rather spread distribution with
a mean at about 12 samples. Besides its randomlike behavior,
the system has nontrivial long term correlations that span
over a single stick-slip, i.e., over many samples in the time
series of extrema. However, in order to identify these corre-
lations longer time series than the ones from the pseudope-
riodic system are required.

Our simulations confirmed the dependence of the power
of the statistics of the surrogate data test on the data size. In
Fig. 5, results are shown from the simulations with time
series lengths of extrema ofn=128 andn=1024. Obviously,
the power of all four statistics increase with the data size.
The statisticqMUT

t has very small power whenn=128 and

has generally the worst performance. The other three statis-
tics seem to have about the same power for smalln, but for
largen, qARF

m andqLAM
m reach the highest power(for mù2),

with qLAM
m performing best.

In general, the surrogate data test seems to work properly
with all four statistics, giving small significance when the
original time series is consistent to H0 and large power when
the original time series is not consistent to H0. The power
depends on the data size and the noise level. One cannot
assign more specific rules for the power of the test as it is
heavily system dependent.

IV. APPLICATION TO STRESS TIME SERIES

We use the time series of total stress from two experi-
ments exhibiting the PLC effect(the time series are the same
as in [27]). The first experiment is on a single crystal
Cu-10% Al compressed at constant strain rateė
=3.3310−6 s−1. The stress is sampled at a sampling time
ts=0.05 s during stage I(Lüders deformation) with zero av-
erage hardening. So, the selected stress time series of 20 000
samples is regarded stationary and therefore no detrending
was applied. The stress time series is comprised of stick-slip
patterns, which have a distinctly linear and slow up-trend
followed by a very rapid down-trend. The duration of the
stick-slip patterns has a spread distribution with an average
of about 100 samples. The peaks and troughs of the stick-
slips are clearly discernible, which accommodated the com-
putation of the local extrema(see Fig. 1). The extracted time

FIG. 4. The estimated probability of rejection from 100 parametric surrogate data tests for the pseudoperiodic system. The data length of
the time series of extrema isn=128. The statisticsqAUT

t andqMUT
t are shown in the panels(a), (b), and(c) for the extrema, minima, and

maxima, respectively. The statisticsqARF
m and qLAM

m are shown in the panels(d), (e), and (f) for the extrema, minima, and maxima,
respectively. The results are for noise-free time series and time series with 60% white observational noise as denoted in the labels.
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series of extrema has lengthn=358 and it is denoted S1.
We also use three time series from a polycrystal

Cu-15% Al strained under tension atė=10036.67
310−6 s−1 and T=250°C, sampled atts=0.02s. Three suc-
cessive segments of length 3036 samples each were ob-
tained. An increase in stress due to work hardening could be
seen as a small trend in the segments that was removed using
a 5-deg polynomial. The mean period of stick-slips was
about eight samples in all three segments. The respective
time series of extrema were derived in the same way as for
the single-crystal and the notations and lengths of the three
time series are P1 andn=816, P2 andn=870, and P3 and
n=848.

We apply the test with the BRWAD surrogates to the four
time series of extrema S1, P1, P2, and P3. The general result
from the surrogate data test on the time series of extrema is
that P1, P2, and P3 are clearly discriminated by the respec-
tive BRWAD surrogates while for S1 significant discrimina-
tion is attained only for certain values of the parameters of
the discriminating statistics. Note that S1 is from an experi-
ment with single-crystal and its length is less than half of the
lengths of the other three time series, which are derived from
the experiment on polycrystal alloy. Recalling the results on
the simulated data the limited length of S1 might be a pos-
sible reason for the less significant discrimination.

The test was done on the whole time series of extrema
and on the time series of minima and maxima, separately. It
turned out that in all cases the discrimination between origi-
nal and BRWAD surrogates was less significant for the time
series of minima and maxima than for the whole time series.

As shown in Fig. 6 for the statisticsqAUT
t and qMUT

t (for t
=1, . . . ,10), using the parametric approach the significanceS
for the surrogate data test is consistently larger for the time
series of extrema than for the time series of minima and
maxima. Note that H0 is rejected at 95% confidence level
whenS.1.96 and this threshold ofS is shown with a gray
line in the panels of Fig. 6. The statisticqAUT

t seems to have
larger discriminating power thanqMUT

t . For example, for the
S1 time series of extrema,qAUT

t givesS.2 for event while
qMUT

t gives only marginal rejection of H0 for t=2 andt=4
and no rejection for the other lags[see top panels of Figs.
6(a) and 6(b)]. Also, for the time series P1, P2, and P3 of
minima, qAUT

t gives S.2 for t,4 while qMUT
t gives only

sporadic rejections(at t=5 for P1 and att=1 for P3) [see
middle panels of Figs. 6(a) and 6(b)]. The same holds also
for the time series of maxima, but with somewhat smaller
significance.

The statisticsqARF
m and qLAM

m confirmed that S1 is more
consistent with the BRWAD process than the other three
stress time series of extrema, as shown in Fig. 7. With regard
to S1,S.2 was obtained only for the time series of extrema
at m,6 with qARF

m and atm=1 with qLAM
m . In the case of

extrema, for P1, P2, and P3 confident rejections were ob-
tained from bothqARF

m and qLAM
m for the whole range ofm.

For the minima and maxima, the significance was lower and
only P1 and P3 could be clearly discriminated by both meth-
ods [see middle and lower panels of Figs. 7(a) and 7(b)].
These two statistics seem to perform similarly and they seem
to give more significant rejections thanqAUT

t and qMUT
t and

for a larger range of the free parameter.

FIG. 5. The estimated probability of rejection from 100 parametric surrogate data tests for the Rössler hyperchaos system. The statistics
qAUT

t andqMUT
t are shown in the panels(a), (b), and(c) for the extrema, minima, and maxima, respectively. The statisticsqARF

m andqLAM
m are

shown in the panels(d), (e) and (f) for the extrema, minima, and maxima, respectively. The results yield two lengths of the time series of
extrema,n=128 andn=1204 as denoted in the labels.
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The significance is generally larger for the time series of
extrema than for the time series of minima and maxima. The
overall results suggest that the time series of extrema from
P1, P2, and P3 are not generated by a BRWAD process and
therefore we can conlude that these stress time series have
nontrivial correlations between successive stick-slip patterns.
For the S1 time series of extrema, the test did not give con-
clusive results as the hypothesis of a BRWAD generating
process could be rejected only with some measures and for
few values of the free parameter. This result on the single
crystal is in agreement with another statistical analysis indi-

cating also that the long range correlations in stress data are
weak [19].

V. CONCLUSION

We investigated the deterministic vs stochastic character
of the PLC serrations. We concentrated on long term corre-
lations and therefore we considered the time series of ex-
trema comprised of the turning points of the original time
series in the order of appearance. For this time series we
created a model of bounded random walk of alternating di-

FIG. 6. (a) Significance vst from the test with the statisticqAUT
t on the four stress time series of extrema with the line types as shown

in the inset. The top panel is for the whole time series of local extrema, the middle panel for the minima, and the lower panel for the maxima.
(b) The same as for(a) but for the statisticqMUT

t . The gray horizontal line displays the threshold of rejection at thea=0.05 significance level.

FIG. 7. (a) Significance vsm from the test with the statisticqARF
m on the four stress time series of extrema with the line types as shown

in the inset. The top panel is for the whole time series of local extrema, the middle panel for the minima, and the lower panel for the maxima.
(b) The same as for(a) but for the statisticqLAM

m . The gray horizontal line displays the threshold of rejection at thea=0.05 significance level.
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rection (BRWAD) that assumes the least structure and gen-
erates random data under the constraint of alternating direc-
tion at each iteration. Such a model has the smallest possible
memory as the only correlations in the data are formed from
the alternation of random turning points.

We designed a surrogate data test for the null hypothesis
(H0) that the time series of extrema is generated by a
BRWAD process. We considered four statistics for the test,
the autocorrelationqAUT

t , the mutual informationqMUT
t , the fit

with an autoregressive modelqARF
m and the fit with a local

average mapqLAM
m . The simulated results suggest that all

four statistics give small significance to the test and have
varying power according to the data size and noise in the
data, withqMUT

t having the least power for small or noisy
time series.

We applied the surrogate data test to four stress time se-
ries, one obtained from a single crystal and three obtained
from polycrystals and found that all time series of extrema
were not consistent with the BRWAD process. For the single
crystal time series in particular, the discrimination was much
less significant. It is notable that when the test was applied to
the separate time series of minima and maxima, the discrimi-
nation from the surrogate data was in general substantially
smaller, so that in many cases rejection of H0 could not be
achieved.

The general conclusion is that the simple, short memory
model does not fully explain the observed behavior of the
experimental time series. The rejection of H0 supports the
assumption for the presence of deterministic structure and
long term memory in the sequence of stick-slip events. More
specifically, ourMarkovian modelwith one-step memory in
the reduced time scale cannot adequately explain the obser-
vations. In other words, it appears that the sequence of stick-
slip events possesses longer memory that spans over several
stick-slip events and hence the system can be considered to
have long-term memory.

Regarding the experimental stress data, it is possible to
give a physical interpretation for the existence of long-term
memory. The microstructure of the specimens changes with
increasing deformation by the refinement of the dislocation
cell structure(substructure) inside the grains[28–32]. The
main part of the flow stress increases due to this refinement,
indicating that the amplitude of the internal stress fluctua-
tions also increases(up to some limit at elevated degree of
deformation), in addition to their decrease of wavelength.

Although in this work the overall flow stress increase has
been removed by subtracting from the raw data a function
fitted to the average flow stress, it is reasonable to assume
that the change of microstructure still appears in the long-
term memory discussed above. It is also well known[31]
that, due to the activation of several slip systems in each
grain, the fluctuations in polycrystals tend to be smoothed
out to a larger extent than in single crystals, which also fits
well to the result found from the above time series. In the
single crystal case, there is no memory for the band because
it moves during Lüders straining into virgin material, while
for the polycrystal case the previous work hardened state is
reflected as some memory during propagation of the next
band[33].

The findings of this work open two possible directions for
further statistical analysis on the PLC data. First, the results
on PLC data give evidence against our hypothesis that the
core processeshvkj and hwkj are white. A natural refinement
of our model could be to create colored noise processeshvkj
and hwkj, possessing the empirically observed autocorrela-
tion. Hence the same setup of hypothesis testing for the PLC
time series could be made using a “correlated BRWAD”
model in order to investigate whether this model can repro-
duce properties of the PLC time series of extrema.

Second, in this work the information regarding the time
scale of the original time series was suppressed. A possible
extension is to postulate avector process which describes
both the extrema and the time increments between consecu-
tive extrema. In this way, the original time series is reduced
to a new time series of the formst1,x1d ,st2,x2d , . . . ,stn,xnd,
wheresti ,xid are the coordinates for theith extreme. In this
connection, it is pointed out that for the PLC time series with
linear up and down trends, the time serieshsti ,xidj retains the
most relevant information about the original time series.
Thus it would be interesting to investigate whether an ex-
tended(white or correlated) BRWAD model for the vector
time serieshsti ,xidj is adequate.
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