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In an effort to understand the deterministic vs stochastic character of the Portevin—Le Ch&eler
phenomenon, we investigate the structure of the underlying mechanism that generates the stick-slip patterns of
stress over time. The stress time series is reduced to a series of successive pairs of minimum and maximum
values representing the stick-slip patterns and a statistical analysis by means of hypothesis testing is applied to
it. The null hypothesis of least deterministic structure is that the time series of extreme values is a bounded
random walk of alternating directioBRWAD); that is, besides the constraint of succession of minima to
maxima bounded at a predefined range there are no other correlations in the data. To implement the test we use
surrogate data generated by a model consistent with a BRWAD type process, which also uses the statistics of
the original data to best mimic them. The proposed hypothesis testing is found to perform properly on
simulated data from stochastic and deterministic systems. For the PLC time series, the null hypothesis is
rejected at a high level of confidence giving evidence for some deterministic structure in the succession of the
extreme stress values. This result allows for further statistical analysis including also the time aspect of the
stick-slip patterns.
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[. INTRODUCTION results were not conclusive to suggest significant discrimina-
tion.

The presence ddtick-slippatterngslow rather linear elas-

ticlike up-trends followed by down-trends of fast plastic re- In this paper, we attempt through a statistical approach to

laxation) in stress time series of metallic alloys is attributed deal with the question whether thg underlymg system has a
long memory that spans over the time of a stick-slip pattern

to the Portevin—Le ChételiefPLC) effect a form of plastic ;
instability [1]. The PLC effect has been the subject of exten©' the sequence of upward and downward trends of the stick-

sive study. For example, models of PLC-like deformationS!iP Patterns is totally random. We simplify the data analysis
have been presented i2-10 and [11-13. While these by assigning one time step for the time of gach upward and
rather sophisticated, physically based mathematical modeQOWHWafd(bOth apprOXImately Ilpeartrend, e, we derive
capture some of the PLC structure, they cannot exp|ain irﬁ|me series of successive maximum and minimum values
detail the mechanism underlying the different regimes of thérom the stress time series.
PLC effect. On the other hand, stress time series obtained The statistical analysis of the time series of extreme val-
from constant strain rate deformation during PLC have beenes is focused on the hypothesis test for randomness under
studied in[14-14 with techniques of nonlinear time series the constraint of succession of minima and maxima bounded
analysis and evidence has been reported for the presence aifa predefined range of values, which we tallinded ran-
deterministic, nonlinear, and chaotic behavior. Still, the na-dom walk of alternating directiolBRWAD). We develop a
ture of the underlying mechanism of the PLC effect seems twery simple stochastic phenomenological model to generate
need further investigation. surrogate data consistent to the null hypothesis, i.e., the sur-
The succession of slow positive and fast negative linearogate time series are realizations of a BRWAD process that
trends of the stick-slip patterns characterizes the stress timedso mimic the original time series of extrema in terms of the
series with data asymmetry and time irreversibility, both in-amplitude distribution of the minima and maxima. This
dicating nonlinearity and deterministic dynami¢%7,1§. model doesot have long term memory and generates visu-
However, these dynamics regard small time scales and amdly indistinguishable time series from the experimental time
evident even by eye-ball judgment. So, in order to get insighseries of extrema. The surrogate data test is applied first to
onto the underlying mechanism one has to investigatsimulated time series exhibiting stick-slip patterns generated
whether there isong termdeterministic structure in addition by stochastic and deterministic systems to assert that it per-
to theshort termnonlinear dynamics that forms the stick-slip forms properly and then it is applied to some experimental
patterns. In[19], a statistical test was conducted comparingstress time series.
stress time series of stick-slip patterns from single crystals to We believe it is important to conduct a rigorous surrogate
time series having reshuffled the stick slip patterns, but thelata test for the simplest hypothesis for the stick-slip patterns
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FIG. 1. (a) Segment of the stress time series S1, where the samples are denoted by connected dots, the local maxima by open circles, and

the local minima by crosseé) The segment of the time series of extrema corresponding to the segment of the stress time (&grielen

samples of the new time series are denoted by connected open circles and crosses in alternating order and correspond to the minima anc

maxima in(a).

in order to assess whether long term correlations in the streske presence of long-term correlations in the stress time se-
time series can be statistically established and determine thées.
level of significance for this. The work in this paper consti- The objective of our statistical analysis is to investigate
tutes the first approach in a step-by-step statistical analysiwhether it is possible that a time series of extrema, as those
and phenomenological modeling of the stress time serieslerived from the stress time series, be a realization of a sto-
Thus if the working null hypothesis is rejected at high con-chastic process under the least of constraints implied by the
fidence level then the model of BRWAD type can be ex-data configuration. For this, we first build an appropriate
panded to incorporate also temporal correlations. model and then we assess the adequacy of the model using a
The BRWAD model and the statistical test are presenteciumber of statistical measures combined with the surrogate
in Sec. Il. The performance of the test using BRWAD is data test for the hypothesis.
assessed in Sec. Il using simulated data and the test is ap- _ )
plied to stress time series in Sec. IV. Discussions of the re- A. A model for the time series of extrema
sults and concluding remarks are given in Sec. V. Consider the time series of extrerax,, ... ,X,. It satis-
fies the constraint of consecutive minima and maxima:
X1 <X, Xo>Xg, X3<Xq4, €tc. Furthermore, we will also make
the simplifying assumption thag; is a minimum and, is a
The time series we focus our statistical analysis on arenaximum. We present a probabilistic model for the genera-
comprised of alternating extreme points, typically derivedtion of x;,%,, ... X
from a time series of oscillating type. Our primary interestis  As a first step we introduce two auxiliary time serigs
in time series of stick slips, such as the stress time series. WY, ... Yn2-1 @ndug,U,,. .. U, », defined as follows:
Fig. 1, a segment of the stress time series and the respective

Il. THE STATISTICAL ANALYSIS

time series of extrema are shoythe stress time series in the Vi=Xaws for  k=0,1,2, ... n_ 1,
figure is described in Sec. )VIn the time series of extrema, 2
only the turning points of the original time series are pre-

served dropping all the other points, which, due to the lin- n
earity of each up and down trend, do not contain any inter- We=xy for k=1,2,... %

esting dynamical information. However, this severe filtering

does not preserve the information for the time period of eache., we rewrite the original time series as
trend. This kind of reduction of information is common in Yo,U1,Y1,Uz, ... Yy2-1,Uy2, Where they’s are the minima
the analysis of time series which exhibit “exciting” varia- and theu,’s the maxima. For example, referring to Figb},
tions in only a small subset of the original data set. Forthe first four samples arg,=x;=9.63, u;=x,=12.82, y;
example, in the nonlinear analysis of time series, interspikexz=10.48, andu,=x,=11.75. Thus we can consider two
intervals are often used instead of the complete time serieseparate time series associated to the two components ap-
[20]. Thus the time series of extrema evolves on a differenpearing with period 2, one for maximia}, and one for
time scale, i.e., a single time step in the time series of exminima {y, wheren,=n/2-1,n,=n/2 andn=n,+n,
trema in Fig. 1b) corresponds to several time steps in the+1.

stress time series in Fig(d). In this way, time undergoes a We assume for the underlying process that, giygrnthe
nonuniform transformation. As a consequence, the presengg’s and u,’s are generated fok=1,2,... by thefollowing

of one-step correlations in the time series of extrema impliesule:
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U= vk(U = Vier) + Vit (1) ner: first x; is chosen in the intervalL,U]; then (for k
=1,2,..) Xy and Xy are generated by

Vie= Wity = L) + L. ) Xok = V(U = Xo1) + Xou1, (5

Thus the proces§x;} is given in terms of two random pro-

cessedv,} and{w,}, defined as follows(a) for everyk we Xope1 = Wi(Xo — L) + L. (6)
have v,~V[0,1] and w,~WO0,1], where V[0,1] and
WO, 1] are arbitrary distributions on the intervid, 1] and
we call themcore distributions (b) {v,} and{w,} are white
noise, i.e., for all times,k with i #k

This completes the specification of the probabilistic model of
the time series of extrema.

ﬁ 0 B. Generation of surrogate data

Vi — i)k~ UK = U,

b We use the BRWAD model to generate surrogate data and

test the null hypothesis that the time series does not possess
correlations apart from those imposed by the succession of

maxima and minima. The BRWAD model is tailored to rep-

(W, = W) (W = W) = 0,

(v —v)We—w) =0 and (v - )Wy —w) =0 resent the null hypothesis. The novelty of generating proper
surrogate data is to match certain sample statistical properties
where the overbar denotes expected value. of the original data. So, for the BRWAD model, we need to

Hence the generation of the "interleavegl’anduy ime  gpaify the bounds, U and the core distribution¥[0, 1]
series can be descnbed as follows: the first minimyis andW0, 1] from the given time series of extrenpa}i,. We
selected randomly in the-mterv.@L,U], Wh'c_h forms the set the bounds to the minimum and maximum of the original
range for the datéactually, in t_he implementation we choose time seriesL=x,,, and U=x...,. The core distributions are
Yo .[L’(L+,U/2)],); then at tlmesk=1,.2,... we select a formed by the empirical sample distributions estimated from
maximum in the intervally,-;, U] according to Eq(1) and a {xJn, as follows. The estimates @f andw (call themo,
minimum in the interval[L,u,] according to Eq(2). The and_\ivk) can be obtained from, using Eqs(5) and (6)
process defined in this way is a type of random walk since at
each iteration of the process a random move is made from _ Xog— X1 _ Xge1— L
the last position. The walk is bounded from above and below T and - W= Xo—L ()
by the parametertl andL and at each step the direction is R R
restricted to be opposite to the direction in the previous stepl e sample value i, and{W iy, are computed from Eq.
We call the model for this procedmunded random walk of (7) using the original data and they form the sample distri-
alternating direction(BRWAD). Note that the variables of butions ofV[0,1] andWO, 1], respectively, i.e., at each it-
this process are not identically distributed as the transform agration of the model a random componepandw is drawn
each iteration in Eqg1) and(2) depends on the variabjg_,  With equal probability from{o, 4, and{W}¥,, respectively.
or u,. However, the upward and downward random incre- The complete algorithm for the generation of a surrogate
ments(i.e., u—Y,_1 andy,—Uuy) are determinedrespectively  time serie{z}., with BRWAD is as follows:
by v, andw [see Eqgs(1) and(2)], which follow the core (1) We computel =Xmin, U=Xmax {01ty and{Witpl;.
distributionsV[0, 1] andWO0, 1] and do not depend on the (2) We select z,=y, randomly in the range[L,(L
current position.

Note that Eq(1) can be rewritten in the form of a random +U)/2]- } o
coefficients autoregressivR) model: (3) We generate the maxima and minima of the surrogate

time series as followgrecall Eqs.(5) and (6)]

U = a1 + by, ©)
. Zy=viU = Zy1) + 2y, K=1,2,...0,,
where the random coefficients are ®)
ak=(1—vk)wk_1 and bk=(1—vk)(1—wk_1)L+ka. 22k+l:Wk(22k_L)+L’ k=1,2,... ny,
Similarly, Eq.(2) can be rewritten as where the components, andw, are draws from{o,¢; and
{Wi ey, respectively.
Y= CYk-1 + i (4)

where S o
C. The discriminating statistics

C= (1 =W and de=(1 =Wl +vwU. An important part of the statistical analysis is the estima-

Hence, Eqs(3) and(4) taken together form an order one AR tion of linear and nonlinear characteristics of the time series
model with random and periodic coefficients of period 2,0f extrema. For the linear analysis, we consider the autocor-
which is regarded as a low order nonlinear stochastic modgklation and the fit with a low order linear autoregressive
[21]. (AR) model and for the nonlinear analysis the mutual infor-
Returning to the time series of extremax,, ... X, this ~ mation and the fit with a local average model. These four
is generated by the BRWAD process in the following man-methods serve also as discriminating statistics for the test,
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denoted in general ag for the surrogate data test and they eterm of LAM is called embedding dimension and has the

are briefly presented below. same role as the orden for the AR model. Note that LAM
is not used here as an excellent nonlinear model, but as a
1. Autocorrelation simple nonlinear statistic, which is actually popular in terms

of the surrogate data test for nonlinearis,24.

All the above measures assume stationarity of the time
series. The time series of extrema can be seen as nonstation-
(% = (X0) Xy = O0)) ary if we regard it as a cc_)ncatepation of two dif_ferent pro-

(%= )2 ) 9) cesses. We overlook this inconsistency bear'mg in mind th'at.
t the estimates from the measures do not assign exact statisti-
where(x) is the average over all available détete that this  cal properies, but they are rather used as discriminating sta-
is a time average whereass the expectation The discrimi-  tistics for the hypothesis test.
nating statistic of autocorrelation is computed for a range of
delaysT and for eachr a separate hypothesis test is made.

The autocorrelation(7) measures the linear correlation in
the time series and is defined as

Qaur =r(7) =

D. The surrogate data test

2. Autoregressive fit The estimation of statistical measures on a time series of
o i extrema, as the four measures described above, may give
The fit with an AR model of ordem is evidence for the existence and degree of stochasticity, deter-
m minism, and nonlinearity of the underlying mechanism. For
)‘<t+l:¢0+2 Xejs1, (10) example, a moderate autocorrelation compared to a large
i=

mutual information in the first few lags may be interpreted as
a sign of the existence of nonlinear determinism. Still, such
evidence is incomplete if we do not know what is the range
&f values of the measure estimates that would be expected
under the assumption of a certain system type for the data.

where the coefficientgyg, ¢, ... ,¢, are estimated by least-
squares fit. The goodness of fit is measured here with th
correlation coefficient C@n) between true and predicted

data Our interest is to investigate whether the underlying system
Xoir = ON(%owr — (X can be regarded as purely stochastic or as one that contains
Oare = CC(M) = — {0y = € 2>)( L < >3>2 , (1) some degree of determinisfar correlation that in turn may
V(X1 = OO (Ree1 = (0D be linear, nonlinear, or both. The use of surrogate data in
and this is the discriminating statistic for each order hypothesis testing provides the empirical distribution of the

discriminating statistic under the null hypothesisHor the
nature of the underlying system. Therefore the test is consid-
ered rigorous and it can be applied also when the distribution
The mutual informatiori(7) measures the general corre- of g is not known analytically. The empirical distribution of
lation (linear and nonlinearbetweenx; andx;_, for different g is formed from the values;,q,, ...,qy computed on an

3. Mutual information

delaysT and is defined afl7,22 ensemble oM surrogate data consistent tq,.H80, the test
decision is drawn by simply evaluating whether the statistic
anuur = 1(9 =>p |ogﬂj-_ (12 go computed on the original data falls within the empirical
i PiP; distribution ofg under H,.

The working hypothesis §lis that the time series of ex-
ma is generated by a system that alternates between turn-
ing points in a totally random manner, i.e., it is a process of
BRWAD type. The surrogate data test is conducted in the
following steps.

(1) We generate M  surrogate time  series
- {ZH A, .. 2", from the BRWAD model fitted to
the given time serief}i,, as described in Sec. Il B.

(2) We compute one of the discriminating statistics in

For most of the methods of nonlinear time series analysi$ec. Il C on the original datg}i-, and on the surrogate time
the scalars; are transformed to pointg in R™ using a delay ~ series{z}; {Z},, ... {Z"}, giving the estimates), and
parameterr, so thatx;=[X, X, ... Xim-1)-]’ [17]. Here, we  q,,q,, ... ,qu, respectively.
simply set7=1. A local model estimates the function that (3) We reject H at a significance levelkr (we seta
maps the poink; to x4 locally for each target point;. We  =0.05 if gy lies in the tail of the distribution formed by
use a simple local model, called local average mappingy;,ds,, ... ,du, Where the tail is determined hy.
(LAM), which predicts the one time step mappikg,; of The test decision in the last step can be made using the
each reconstructed poirt from the average of the respec- parametric or nonparametric approach.
tive mappings of itk nearest neighbor points. The model is (1) Parametric approachWe assume that the distribution
applied in the same way as the AR model and the discrimiof g under H, is normal (our simulations support this as-
nating statistiaq"y,, is computed as in Eq11). The param- sumption and we compute the so-called significar®by

In the above expression the summation is over the bins of thﬁ;e
partition of the datddefault value is 1§ p; is the estimated
probability that a data poin, is in bini, p; is the estimated
probability that a data point,_, is in bin j, andp;; is the
estimated joint probability that, is in bini andx,_, is in bin

4. Local average mapping
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FIG. 2. Four estimates of dynamical characteristics computed on a time series of extrema, minima, and maxima, generated by the
BRWAD model with uniform input noise as indicated in the legen@s.Autocorrelation vs delayb) Mutual information vs delay(c)
Correlation coefficient of the fit from an AR model vs the orderd) Correlation coefficient of the fit from a LAM model vs the embedding
dimensionm.

lao— (@) representative systems in order to assess the consistency of
S=—— the statistical analysis to the dynamical properties of the sys-
% tems. The systems are a BRWAD stochastic process, a

where (g) is the average ang, the standard deviation of pseudoperiodic system, and a chaotic system.
J:,%, --. ,qu- Significance of about 2 suggests the rejection
of Hy at the significance levelv=0.05 (95% confidence A. BRWAD with uniform input noise

level).
) In Sec. Il A, we designed the model BRWAD that gener-

anézivgfg.ﬁiam?m ipfgogcrlgietig;d:;?;lglr ?ﬁah ')qzw)' ates stochastic time series of extrema with the least of corre-
ject | If do b Jate lations under the constraint of consecutive turning points.

X(M+1) or greater thar(l—a/z)(M+.1) assuming a two-  pere, the working data are generated by this model using

sided test. FoM=40 anda=0.05 we reject lfif o isinthe  standard uniform core distributions, i.ev,~ U[0,1] and v,

first or last position of the ordered sequence of __ u[0,1].

Qo:G1, G2, - - G- In Fig. 2 we show the estimates for autocorrelatiof),

. Complementar)r( to the surrogate data test for the time S&hutual informationJ (), the correlation coefficient from the
ries of extrem&xi.;, we also perform the same test on thefit [denoted as C@)] with an autoregressive model AR)
t?me series of miniméyt}{‘zvl and _maxime{ut}{‘:ul. Th_e 'eSPEC- and the COm) from a fit with local average mappi’ng
t'Vlen surr:ogate Mtlnme series - are derived  from LAM (m). The estimates are computed on a time series of
(@ (2} - {2} accordingly. extrema oin=2048 samples and on the respective time series
of minima and maxima, whera,=n,=1024. For the time
series of minima and maxima the autocorrelation function
decays exponentially to zero while for the time series of
We verify the validity of the statistical analysis on simu- extrema it converges to a rather strong two-periodic function
lated data and study the significance and power of the surradue to the alternating minima and maxima. This oscillating
gate data test. We chose time series of extrema from thresehavior ofr(7) is due to the alternation between two under-

Ill. PERFORMANCE OF THE TEST
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FIG. 3. The estimated probability of rejection when applying parametric surrogate data tests on 100 realizations of e¢dyemiaima
in (b), and maxima ir(c), generated by the BRWAD model with uniform input noise. The test results are for the stafl$ficSiiT, UAre:
andq[,y,, as indicated in the legends.

lying processes which render the time sefigs nonstation-  nificance levelfor «=0.05 we found about five rejections in
ary. The general correlations estimated Hy) are also 100 tests For the time window of twa7=2 or m=2 de-
higher for the extrema than for the minima and maxima. Thepending on the statistiave show in Fig. 3 the results of the
same feature is observed from the estimates of fit from th@robability of rejection for the range of data sizes. It is noted
linear and the nonlinear model. All four measures suggesthat the nominal probabilitya=0.05 was obtained even for
that the imposed alternations in the generation of the datgealizations of 128 extrema and 64 minima and maxima and
result in correlated time series with the time series of exfor all four statistics. In Fig. 3 the results are obtained using
trema having distinctly stron¢and linearly alternatingcor-  the parametric approach. The nonparametric approach gave
relations. It seems that all correlations tend to stabilize fogyualitatively the same results.
time windows that span over at least two samglesrre-
sponding tor> 2 for r(7) andl(7) andm>2 for AR(m) and o
LAM (m)]. B. Pseudoperiodic system

The estimates presented in Fig. 2 are used as discriminat- The pseudoperiodic systems are nonlinear deterministic
ing statistics in the surrogate data test to assess the signiBystems which have nontrivial dynamics and maintain some
cance(type | erro) of the test, i.e., the probability of reject- degree of irregularity. In the simulations, we use a 2-torus in
ing Hy when it is true. We generated 100 time series ofa fourth-dimensional space described25]. The time series
extrema using the BRWAD model with uniform input noise. is derived as the sum of the second and fourth system vari-
We repeated this for a number of data sizes ranging from 128bles giving similar stick-slip patterns to those observed in
to 16 384 with an increment of power of(2e., 7,...,14. PLC. The sampling time is;=0.1s and the distribution of
For each one of the 100 realizatio =40 surrogate time the periods of the oscillation®f stick-slip typg has a peak
series were generated using the BRWAD model as describest 20 samples.
in Sec. Il A. The discriminating statistics were computed on  Obviously, pseudoperiodic systems cannot be modeled by
the original and surrogate data varying the free parameter cftochastic systems and therefore the BRWAD model should
each measure in the same way as we did for Fig. 2, i.e., lafail when applied to the time series of extrema derived by

=1, ...,10, for the statistic of autocorrelatigf, and the  such a system. Our simulations showed that the time series
statistic of mutual informatiorgg,; order (or embedding of extrema, minima, and maxima from the pseudoperiodic
dimension m=1,...,10 for the statistic of the correlation system is discriminated from BRWAD surrogates even when

coefficient of the fit from AR and LAM,gxre and gy,  the time series are small and noisy. In particular, we assess
respectively. Then we estimated the probability of rejectionthe power of the four statistics of the surrogate data test on
(counting the percentage of rejections out of 100 realizasmall time series, noise-free and corrupted with up to 60%
tiong) at the significance level ak=0.05 for each test. The observational noisgmeaning that we added white normal
total number of tests for each of the 100 realizations is thaoise with standard deviation being 60% of the standard de-

product of the following factors: viation of the data The results are shown in Fig. 4. The
(i) three types of time seriegextrema, minima, and simulation setup is as for the BRWAD model above.
maxima; The power of the measures decrease with the increase of
(i) seven data size@’,28,...,2%; noise amplitude. For example, as Figayshows, while the
(iii) four discriminating statisticéqz ., dyut: Uare @nd  power ofqy, for noise-free data is 1 for atl, when the data
q'am); and are corrupted with 60% noise its power drops to about 0.05
(iv) ten values of the free parameteror m, from 1 to  for all 7. The statisticg,,; seems to be the most robust to
10). noise, but has generally smaller and varying power with the

The results showed excellent robustness for all differenfree parameter, as compared to the other three statistics. The
factors as the probability of rejection was always at the sigstatisticsgage and g, reach the highest level of power in
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FIG. 4. The estimated probability of rejection from 100 parametric surrogate data tests for the pseudoperiodic system. The data length of
the time series of extrema is=128. The statistics|y ,; and gy, are shown in the panelg), (b), and(c) for the extrema, minima, and
maxima, respectively. The statistichrr and q'a,, are shown in the panelg), (e), and (f) for the extrema, minima, and maxima,
respectively. The results are for noise-free time series and time series with 60% white observational noise as denoted in the labels.

the noise-free case, but their power decreases in variousas generally the worst performance. The other three statis-

ways when the data are corrupted with high degree of noisécs seem to have about the same power for smatiut for

and less for the whole time series of extrema than for théargen, gxze andq’y, reach the highest powgfor m=2),

time series of minima and maxima. This is somehow exwith q[y,, performing best.

pected as in the presence of high levels of noise the deter- In general, the surrogate data test seems to work properly

ministic structure of the pseudoperiodic time series iswith all four statistics, giving small significance when the

masked and the original time series cannot be clearly distineriginal time series is consistent tq)tdnd large power when

guished from the BRWAD counterparts. the original time series is not consistent tg. Hhe power
depends on the data size and the noise level. One cannot
assign more specific rules for the power of the test as it is

C. Chaotic system heavily system dependent.
We consider here the extreme time series from the fourth
variable of the system of Rdssler hyperchaos, which is a IV. APPLICATION TO STRESS TIME SERIES

fourth order differential deterministic system that can exhibit
stochastic behavidi26]. The oscillations of this time series We use the time series of total stress from two experi-
are of the stick-slip type. The sampling time7ig=0.1 s and ments exhibiting the PLC effe¢the time series are the same
the period of stick-slips has a rather spread distribution withas in [27]). The first experiment is on a single crystal
a mean at about 12 samples. Besides its randomlike behavi@@u-10% Al compressed at constant strain rate
the system has nontrivial long term correlations that spamr3.3x 106 s, The stress is sampled at a sampling time
over a single stick-slip, i.e., over many samples in the timer,=0.05 s during stage(Liders deformationwith zero av-
series of extrema. However, in order to identify these correerage hardening. So, the selected stress time series of 20 000
lations longer time series than the ones from the pseudop&amples is regarded stationary and therefore no detrending
riodic system are required. was applied. The stress time series is comprised of stick-slip
Our simulations confirmed the dependence of the powepatterns, which have a distinctly linear and slow up-trend
of the statistics of the surrogate data test on the data size. lollowed by a very rapid down-trend. The duration of the
Fig. 5, results are shown from the simulations with timestick-slip patterns has a spread distribution with an average
series lengths of extrema 0F128 andn=1024. Obviously, of about 100 samples. The peaks and troughs of the stick-
the power of all four statistics increase with the data sizeslips are clearly discernible, which accommodated the com-
The statisticqy, ; has very small power when=128 and putation of the local extrem@ee Fig. 1. The extracted time
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FIG. 5. The estimated probability of rejection from 100 parametric surrogate data tests for the Rossler hyperchaos system. The statistics
gaut andaf, T are shown in the pane(s), (b), and(c) for the extrema, minima, and maxima, respectively. The statigfigs andq,,, are
shown in the panel&), (e) and(f) for the extrema, minima, and maxima, respectively. The results yield two lengths of the time series of
extrema,n=128 andn=1204 as denoted in the labels.

series of extrema has lengtl+ 358 and it is denoted S1. As shown in Fig. 6 for the statistiog, ; and gy, (for =

We also use three time series from a polycrystal=1,...,10, using the parametric approach the significaBce
Cu-15% Al strained under tension at=100x6.67 for the surrogate data test is consistently larger for the time
X106 st and T=250°C, sampled at,=0.02s. Three suc- series of extrema than for the time series of minima and
cessive segments of length 3036 samples each were olraxima. Note that klis rejected at 95% confidence level
tained. An increase in stress due to work hardening could beshen S>1.96 and this threshold & is shown with a gray
seen as a small trend in the segments that was removed usilige in the panels of Fig. 6. The statisti§ ,; seems to have
a 5-deg polynomial. The mean period of stick-slips waslarger discriminating power thag, ;. For example, for the
about eight samples in all three segments. The respectiv@l time series of extremay; givesS>2 for evenr while
time series of extrema were derived in the same way as foy,,r gives only marginal rejection of gifor 7=2 andr=4
the single-crystal and the notations and lengths of the threand no rejection for the other lagsee top panels of Figs.
time series are P1 ami=816, P2 anch=870, and P3 and 6(a) and &b)]. Also, for the time series P1, P2, and P3 of
n=848. minima, gy gives S>2 for r<<4 while gy, gives only

We apply the test with the BRWAD surrogates to the foursporadic rejectiongat 7=5 for P1 and atr=1 for P3 [see
time series of extrema S1, P1, P2, and P3. The general resuitiddle panels of Figs. (@) and §b)]. The same holds also
from the surrogate data test on the time series of extrema for the time series of maxima, but with somewhat smaller
that P1, P2, and P3 are clearly discriminated by the respesignificance.
tive BRWAD surrogates while for S1 significant discrimina- ~ The statisticsgire and gy, confirmed that S1 is more
tion is attained only for certain values of the parameters ofonsistent with the BRWAD process than the other three
the discriminating statistics. Note that S1 is from an experi-stress time series of extrema, as shown in Fig. 7. With regard
ment with single-crystal and its length is less than half of theto S1,S>2 was obtained only for the time series of extrema
lengths of the other three time series, which are derived fromat m<6 with gz and atm=1 with q,y,. In the case of
the experiment on polycrystal alloy. Recalling the results orextrema, for P1, P2, and P3 confident rejections were ob-
the simulated data the limited length of S1 might be a postained from bothgyk- and gy, for the whole range ofn.
sible reason for the less significant discrimination. For the minima and maxima, the significance was lower and

The test was done on the whole time series of extremanly P1 and P3 could be clearly discriminated by both meth-
and on the time series of minima and maxima, separately. khds [see middle and lower panels of Figgayand 1b)].
turned out that in all cases the discrimination between origiThese two statistics seem to perform similarly and they seem
nal and BRWAD surrogates was less significant for the timgo give more significant rejections thayj; and qy,r and
series of minima and maxima than for the whole time seriesfor a larger range of the free parameter.
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6 5
delay © delay 1

FIG. 6. (a) Significance vsr from the test with the statistigy ,; on the four stress time series of extrema with the line types as shown
in the inset. The top panel is for the whole time series of local extrema, the middle panel for the minima, and the lower panel for the maxima.
(b) The same as faia) but for the statistiay, ;. The gray horizontal line displays the threshold of rejection atth6.05 significance level.

The significance is generally larger for the time series ofcating also that the long range correlations in stress data are
extrema than for the time series of minima and maxima. Theveak[19].
overall results suggest that the time series of extrema from
P1, P2, and P3 are not generated by a BRW/_\D process and V. CONCLUSION
therefore we can conlude that these stress time series have
nontrivial correlations between successive stick-slip patterns. We investigated the deterministic vs stochastic character
For the S1 time series of extrema, the test did not give conef the PLC serrations. We concentrated on long term corre-
clusive results as the hypothesis of a BRWAD generatindations and therefore we considered the time series of ex-
process could be rejected only with some measures and forema comprised of the turning points of the original time
few values of the free parameter. This result on the singleeries in the order of appearance. For this time series we
crystal is in agreement with another statistical analysis indicreated a model of bounded random walk of alternating di-

Significance
Significance

FIG. 7. (a) Significance van from the test with the statistigxre on the four stress time series of extrema with the line types as shown
in the inset. The top panel is for the whole time series of local extrema, the middle panel for the minima, and the lower panel for the maxima.
(b) The same as faa) but for the statisti@|',, . The gray horizontal line displays the threshold of rejection atth®.05 significance level.
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rection (BRWAD) that assumes the least structure and genAlthough in this work the overall flow stress increase has
erates random data under the constraint of alternating diretdeen removed by subtracting from the raw data a function
tion at each iteration. Such a model has the smallest possibfiated to the average flow stress, it is reasonable to assume
memory as the only correlations in the data are formed fronthat the change of microstructure still appears in the long-
the alternation of random turning points. term memory discussed above. It is also well knop@i]

We designed a surrogate data test for the null hypothesithat, due to the activation of several slip systems in each
(Ho) that the time series of extrema is generated by arain, the fluctuations in polycrystals tend to be smoothed
BRWAD process. We considered four statistics for the testout to a larger extent than in single crystals, which also fits
the autocorrelationy,r, the mutual informatiomy, 1, the fit  well to the result found from the above time series. In the
with an autoregressive modeghgr and the fit with a local single crystal case, there is no memory for the band because
average mapjyy. The simulated results suggest that allit moves during Liiders straining into virgin material, while
four statistics give small significance to the test and haveor the polycrystal case the previous work hardened state is
varying power according to the data size and noise in th@eflected as some memory during propagation of the next
data, withqy,,+ having the least power for small or noisy band[33].

time series. The findings of this work open two possible directions for

_ We applied the surrogate data test to four Sress time g qr statistical analysis on the PLC data. First, the results

frles, on? obtalnled fr((j)rp a z'nﬁle clrlys_tal and_thre? obtained, b| ¢ gata give evidence against our hypothesis that the

rom polycrystals and found that all time series of extrema , .

were not consistent with the BRWAD process. For the singleCOre processefyd and{wd are white. A natl_JraI refinement
f our model could be to create colored noise procegsgs

crystal time series in particular, the discrimination was much’ . s
less significant. It is notable that when the test was applied t§nd (Wi, possessing the empirically observed autocorrela-

the separate time series of minima and maxima, the discrimiion- Hence the same setup of hypothesis testing for the PLC
nation from the surrogate data was in general substantiallffme series could be made using a “correlated BRWAD"
smaller, so that in many cases rejection of ¢buld not be model in ord_er to mvestlgate_ Whethe_:r this model can repro-
achieved. duce properties of the PLC time series of extrema.

The general conclusion is that the simple, short memory S€cond, in this work the information regarding the time
model does not fully explain the observed behavior of thescale of the original time series was suppressed. A possible
experimental time series. The rejection of Bupports the extension is to postulate \gecto.r process which describes
assumption for the presence of deterministic structure anfoth the extrema and the time increments between consecu-
long term memory in the sequence of stick-slip events. Mordive extrer_na. In thls way, the original time series is reduced
specifically, ourMarkovian modelith one-step memory in {0 & new time series of the foriry, x,), (72,Xz), .. (7, Xn),
the reduced time scale cannot adequately explain the obsethere(s,x) are the coordinates for tréh extreme. In this
vations. In other words, it appears that the sequence of stickeonnection, it is pointed out that for the PLC time series with
slip events possesses longer memory that spans over sevelgar up and down trends, the time sefiés, x)} retains the
stick-slip events and hence the system can be considered faost relevant information about the original time series.
have long-term memory. Thus it would be interesting to investigate whether an ex-

Regarding the experimental stress data, it is possible ttended(white or correlatefl BRWAD model for the vector
give a physical interpretation for the existence of long-termtime serieg((7,x)} is adequate.
memory. The microstructure of the specimens changes with
increasing deformation by the refinement of the dislocation
cell structure(substructurginside the graing28-32. The This research was supported in part by the European
main part of the flow stress increases due to this refinemenGommission under TMR ERB FMRX-CT96-0062 and RTN-
indicating that the amplitude of the internal stress fluctua-CT-2002-00198 research training networks. The authors
tions also increase@p to some limit at elevated degree of want to thank Dr. C. Engelke, who kindly provided the ex-
deformation, in addition to their decrease of wavelength. perimental stress time series used in the analysis.
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